Synaptic feed-backs mediated by potassium ions.

نویسندگان

  • D P Matyushkin
  • I I Krivoi
  • T M Drabkina
چکیده

Repetitive activity of the neuromuscular system and of neuronal centers leads to K+ efflux from excited cells and to its accumulation within extracellular spaces and synaptic clefts, especially during the generation of postsynaptic responses such as end-plate potentials or excitatory postsynaptic potentials. K+ ions accumulated within the synaptic cleft during activity modulate the transmitter secretion from motor nerve terminals. Depending on the concentration, K+ can either increase the transmitter release due to a specific presynaptic action or decrease it due to depolarization of the presynaptic membrane. The dual antidromic action of K+ can be the basis of functional self-regulation of the synapse. The significance of the positive presynaptic action of K+ can be assumed to enhance the reliability of the synaptic transmission at moderate activation rates. The negative presynaptic action of K+, which predominates at high-frequency activities or during neuromuscular fatigue, leads to randomized failures of transmissions at individual synapses, the overall pattern of activation of the entire system being reproduced. This might save the general capability of the system and protect its weakest elements. The positive antidromic action of K+ can be assumed to be essential to the mechanism of heterosynaptic facilitation and long-term potentiation at learning synapses of the brain.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

P13: Potassium Channels and Long-Term Potentiation Formation

Long-term potentiation (LTP) is a form of activity-dependent plasticity that occurs during learning. Potassium channels are the most diverse group of all ion channels that related to synaptic plasticity. Small-conductance calcium-activated potassium channels (SKs) are found in hippocampal CA1 neurons and by inhibiting of postsynaptic potentials are involved in synaptic transmission impairment. ...

متن کامل

A Hierarchy of Cell Intrinsic and Target-Derived Homeostatic Signaling

Homeostatic control of neural function can be mediated by the regulation of ion channel expression, neurotransmitter receptor abundance, or modulation of presynaptic release. These processes can be implemented through cell autonomous or intercellular signaling. It remains unknown whether different forms of homeostatic regulation can be coordinated to achieve constant neural function. One way to...

متن کامل

The effect of ketamine on NMDA receptor-mediated LTP depends on ketamine effects on non-NMDA-mediated synaptic transmission in CA1 area of rat hippocampal slices

It has been reported that ketamine as an uncompetitive N-methyl-D-aspartate (NMDA) receptor antagonist has also non-NMDA receptor antagonist properties. We recently found that ketamine (20 ?M) affected differently induction of NMDA receptor-mediated long-term potentiation (LTP) when administered 30 min prior to tetanic Primed-Bursts (PBs) stimulation. On the other hand, ketamine also influenced...

متن کامل

The effect of ketamine on NMDA receptor-mediated LTP depends on ketamine effects on non-NMDA-mediated synaptic transmission in CA1 area of rat hippocampal slices

It has been reported that ketamine as an uncompetitive N-methyl-D-aspartate (NMDA) receptor antagonist has also non-NMDA receptor antagonist properties. We recently found that ketamine (20 ?M) affected differently induction of NMDA receptor-mediated long-term potentiation (LTP) when administered 30 min prior to tetanic Primed-Bursts (PBs) stimulation. On the other hand, ketamine also influenced...

متن کامل

Zinc and copper influence excitability of rat olfactory bulb neurons by multiple mechanisms.

Zinc and copper are highly concentrated in several mammalian brain regions, including the olfactory bulb and hippocampus. Whole cell electrophysiological recordings were made from rat olfactory bulb neurons in primary culture to compare the effects of zinc and copper on synaptic transmission and voltage-gated ion channels. Application of either zinc or copper eliminated GABA-mediated spontaneou...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • General physiology and biophysics

دوره 14 5  شماره 

صفحات  -

تاریخ انتشار 1995